Даны три положительных числа a, b, c, удовлетворяющие условиям a ≤ b ≤ c < a + b. Докажите последовательно утверждения: 1) 0 < (c2 + a2 - b2) / 2c < a; 2) существует прямоугольный треугольник BCD, у которого гипотенуза BC = a, а катет BD = (c2 + a2 - b2) / 2c; 3) треугольник ABC, у которого BC = a, AB = c, а расстояние BD равно (c2 + a2 - b2) / 2c, имеет сторону АС = b.