РЕШЕБНИКИ
Химия | Физика | Термех | Математика | Геометрия
ЛАБ. РАБ.
Химия
Школьнику / Студенту
Репетиторы | Заказ работ
Главная » Решебник Чертов, Воробьев » Физика

Задачи на тему Динамика материальной точки и тела, движущихся поступательно

Предмет Физика
Из пособия Решебник Чертов, Воробьев
Физические основы механики » 2. Динамика материальной точки и тела, движущихся поступательно
Сборник задач взят из задачника Чертова, Воробьева за 1988 г.

Физические основы механики
§ 2. Динамика материальной точки и тела, движущихся поступательно

Условия задач и ссылки на решения по данной теме:
1 К концам однородного стержня приложены две противоположно направленные силы F1=40 Н и F2=100 Н. Определить силу натяжения T стержня в поперечном сечении, которое делит стержень на две части в отношении 1:2.
РЕШЕНИЕ

2 В лифте на пружинных весах находится тело массой m=10 кг. Лифт движется с ускорением a=2 м/с2. Определить показания весов в двух случаях, когда ускорение лифта направлено вертикально вверх, вертикально вниз
РЕШЕНИЕ

3 При падении тела с большой высоты его скорость при установившемся движении достигает 80 м/с. Определить время τ, в течение которого начиная от момента начала падения скорость становится равной 1/2 vуст. Силу сопротивления воздуха принять пропорциональной скорости тела.
РЕШЕНИЕ

4 Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом 30 к нормали. Определить импульс, получаемый стенкой.
РЕШЕНИЕ

5 На спокойной воде пруда стоит лодка длиной L и массой M перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой m. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.
РЕШЕНИЕ

6 Два шара массами m1=2,5 кг и m2=1,5 кг движутся навстречу друг другу со скоростями v1=6 м/с и v2=2 м/с. Определить скорость шаров после удара; кинетические энергии шаров T1 до и T2 после удара; долю кинетической энергии w шаров, превратившейся во внутреннюю энергию. Удар считать прямым, неупругим.
РЕШЕНИЕ

7 Шар массой m1, движущийся горизонтально с некоторой скоростью v1, столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой. Какую долю w своей кинетической энергии первый шар передал второму?
РЕШЕНИЕ

8 Молот массой m1=200 кг падает на поковку, масса m2 которой вместе с наковальней равна 2500 кг. Скорость молота в момент удара равна 2 м/с. Найти кинетическую энергию T1 молота в момент удара; энергию T2, переданную фундаменту; энергию T, затраченную на деформацию поковки; коэффициент полезного действия КПД удара молота о поковку. Удар молота о поковку рассматривать как неупругий.
РЕШЕНИЕ

9 Боек ударная часть свайного молота массой m1=500 кг падает на сваю массой m2=100 кг со скоростью v1=4 м/с. Определить кинетическую энергию T1 бойка в момент удара; энергию T2, затраченную на углубление сваи в грунт; кинетическую энергию T, перешедшую во внутреннюю энергию системы; КПД удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий.
РЕШЕНИЕ

2.1 На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение a бруска.
РЕШЕНИЕ

2.2 На столе стоит тележка массой m1=4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением a будет двигаться тележка, если к другому концу шнура привязать гирю массой m2=1 кг?
РЕШЕНИЕ

2.3 К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами m1=1,5 кг и m2=3 кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.
РЕШЕНИЕ

2.4 Два бруска массами m1=1 кг и m2=4 кг, соединенные шнуром, лежат на столе. С каким ускорением a будут двигаться бруски, если к одному из них приложить силу F=10 Н, направленную горизонтально? Какова будет сила натяжения шнура, соединяющего бруски, если силу 10 Н приложить к первому бруску, ко второму бруску? Трением пренебречь.
РЕШЕНИЕ

2.5 На гладком столе лежит брусок массой m=4 кг. К бруску привязаны два шнура, перекинутые через неподвижные блоки, прикрепленные к противоположным краям стола. К концам шнуров подвешены гири, массы которых m1=1 кг и m2=2 кг. Найти ускорение a, с которым движется брусок, и силу натяжения Т каждого из шнуров. Массой блоков и трением пренебречь.
РЕШЕНИЕ

2.6 Наклонная плоскость, образующая угол 25 с плоскостью горизонта, имеет длину l=2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t=2 c. Определить коэффициент трения тела о плоскость.
РЕШЕНИЕ

2.7 Материальная точка массой m=2 кг движется под действием некоторой силы F согласно уравнению x=A+Bt+Ct2+Dt3, где С=1 м/с2, D=-0,2 м/с3. Найти значения этой силы в моменты времени t1=2 с и t2=5 c. В какой момент времени сила равна нулю
РЕШЕНИЕ

2.8 Молот массой m=1 т падает с высоты h=2 м на наковальню. Длительность удара t=0,01 c. Определить среднее значение силы удара.
РЕШЕНИЕ

2.9 Шайба, пущенная по поверхности льда с начальной скоростью v0=20 м/с, остановилась через t=40 c. Найти коэффициент трения f шайбы о лед.
РЕШЕНИЕ

2.10 Материальная точка массой m=1 кг, двигаясь равномерно, описывает четверть окружности радиусом r=1,2 м в течение времени t=2 c. Найти изменение импульса точки.
РЕШЕНИЕ

2.11 Тело массой m=5 кг брошено под углом 30 к горизонту с начальной скоростью v0=20 м/с. Пренебрегая сопротивлением воздуха, найти импульс силы F, действующей на тело, за время его полета; изменение импульса тела за время полета.
РЕШЕНИЕ

2.12 Шарик массой m=100 г упал с высоты h=2,5 м на горизонтальную плиту, масса которой много больше массы шарика, и отскочил от нее вверх. Считая удар абсолютно упругим, определить импульс, полученный плитой.
РЕШЕНИЕ

2.13 Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p1, полученный стеной, если в последний момент перед ударом шарик имел скорость v0=10 м/с, направленную под углом 30 к поверхности стены. Удар считать абсолютно упругим.
РЕШЕНИЕ

2.14 Тело массой m=0,2 кг соскальзывает без трения по желобу высотой h=2 м. Начальная скорость v0 шарика равна нулю. Найти изменение импульса шарика и импульс p, полученный желобом при движении тела.
РЕШЕНИЕ

2.15 Ракета массой m=1 т, запущенная с поверхности Земли вертикально вверх, поднимается с ускорением a=2g. Скорость струи газов, вырывающихся из сопла, равна 1200 м/с. Найти расход горючего.
РЕШЕНИЕ

2.16 Космический корабль имеет массу m=3,5 т. При маневрировании из его двигателей вырывается струя газов со скоростью v=800 м/с; расход горючего 0,2 кг/с. Найти реактивную силу R двигателей и ускорение a, которое она сообщает кораблю.
РЕШЕНИЕ

2.17 Вертолет массой m=3,5 т с ротором, диаметр которого равен 18 м, висит в воздухе. С какой скоростью v ротор отбрасывает вертикально вниз струю воздуха? Диаметр струи считать равным диаметру ротора.
РЕШЕНИЕ

2.18 Брусок массой m2=5 кг может свободно скользить по горизонтальной поверхности без трения. На нем находится другой брусок массой m1=1 кг. Коэффициент трения соприкасающихся поверхностей брусков f=0,3. Определить максимальное значение силы, приложенной к нижнему бруску, при которой начнется соскальзывание верхнего бруска.
РЕШЕНИЕ

2.19 На горизонтальной поверхности находится брусок массой m1=2 кг. Коэффициент трения бруска о поверхность равен 0,2. На бруске находится другой брусок массой m2=8 кг. Коэффициент трения f2 верхнего бруска о нижний равен 0,3. К верхнему бруску приложена сила F. Определить значение силы F1, при котором начнется совместное скольжение брусков по поверхности; значение силы F2, при котором верхний брусок начнет проскальзывать относительно нижнего.
РЕШЕНИЕ

2.20 Ракета, масса которой M=6 т, поднимается вертикально вверх. Двигатель ракеты развивает силу тяги F=500 кН. Определить ускорение a ракеты и силу натяжения T троса, свободно свисающего с ракеты, на расстоянии, равном 1/4 его длины от точки прикрепления троса. Масса m троса равна 10 кг. Силой сопротивления воздуха пренебречь.
РЕШЕНИЕ

2.21 На плоской горизонтальной поверхности находится обруч, масса которого ничтожно мала. К внутренней части обруча прикреплен груз малых размеров, как это показано на рис. 2.7. Угол α=30. С каким ускорением a необходимо двигать плоскость в направлении, указанном на рисунке, чтобы обруч с грузом не изменил своего положения относительно плоскости? Скольжение обруча по плоскости отсутствует.
РЕШЕНИЕ

2.22 Самолет летит в горизонтальном направлении с ускорением a=20 м/с2. Какова перегрузка пассажира, находящегося в самолете
РЕШЕНИЕ

2.23 Автоцистерна с керосином движется с ускорением a=0,7 м/с2. Под каким углом к плоскости горизонта расположен уровень керосина в цистерне
РЕШЕНИЕ

2.24 Бак в тендере паровоза имеет длину l=4 м. Какова разность уровней воды у переднего и заднего концов бака при движении поезда с ускорением a=0,5 м/с2
РЕШЕНИЕ

2.25 Неподвижная труба с площадью S поперечного сечения, равной 10 см2, изогнута под углом 90 и прикреплена к стене. По трубе течет вода, объемный расход которой 50 л/с. Найти давление p струи воды, вызванной изгибом трубы.
РЕШЕНИЕ

2.26 Струя воды ударяется о неподвижную плоскость, поставленную под углом 60 к направлению движения струи. Скорость v струи равна 20 м/с, площадь ее поперечного сечения равна 5 см2. Определить силу давления струи на плоскость.
РЕШЕНИЕ

2.27 Катер массой m=2 т с двигателем мощностью N=50 кВт развивает максимальную скорость 25 м/с. Определить время t, в течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления движению катера изменяется пропорционально квадрату скорости.
РЕШЕНИЕ

2.28 Снаряд массой m=10 кг выпущен из зенитного орудия вертикально вверх со скоростью v0=800 м/с. Считая силу сопротивления воздуха пропорциональной скорости, определить время t подъема снаряда до высшей точки. Коэффициент сопротивления k=0,25 кг/с.
РЕШЕНИЕ

2.29 С вертолета, неподвижно висящего на некоторой высоте над поверхностью Земли, сброшен груз массой m=100 кг. Считая, что сила сопротивления воздуха изменяется пропорционально скорости, определить, через какой промежуток времени ускорение a груза будет равно половине ускорения свободного падения. Коэффициент сопротивления k=10 кг/с.
РЕШЕНИЕ

2.30 Моторная лодка массой m=400 кг начинает двигаться по озеру. Сила тяги F мотора равна 0,2 кН. Считая силу сопротивления пропорциональной скорости, определить скорость лодки через t=20 с после начала ее движения. Коэффициент сопротивления k=20 кг/с.
РЕШЕНИЕ

2.31 Катер массой m=2 т трогается с места и в течение времени τ=10 с развивает при движении по спокойной воде скорость v=4 м/с. Определить силу тяги F мотора, считая ее постоянной. Принять силу сопротивления движению пропорциональной скорости; коэффициент сопротивления k=100 кг/с.
РЕШЕНИЕ

2.32 Начальная скорость пули равна 800 м/с. При движении в воздухе за время t=0,8 с ее скорость уменьшилась до v=200 м/с. Масса m пули равна 10 г. Считая силу сопротивления воздуха пропорциональной квадрату скорости, определить коэффициент сопротивления k. Действием силы тяжести пренебречь.
РЕШЕНИЕ

2.33 Парашютист, масса которого m=80 кг, совершает затяжной прыжок. Считая, что сила сопротивления воздуха пропорциональна скорости, определить, через какой промежуток времени скорость движения парашютиста будет равна 0,9 от скорости установившегося движения. Коэффициент сопротивления k=10 кг/с. Начальная скорость парашютиста равна нулю.
РЕШЕНИЕ

2.34 Шар массой m1=10 кг, движущийся со скоростью v1=4 м/с, сталкивается с шаром массой m2=4 кг, скорость v2 которого равна 12 м/с. Считая удар прямым, неупругим, найти скорость шаров после удара в двух случаях-малый шар нагоняет большой шар, движущийся в том же направлении; шары движутся навстречу друг другу.
РЕШЕНИЕ

2.35 В лодке массой m1=240 кг стоит человек массой m2=60 кг. Лодка плывет со скоростью v1=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью v=4 м/с относительно лодки. Найти скорость движения лодки после прыжка человека в двух случаях: человек прыгает вперед по движению лодки и в сторону, противоположную движению лодки.
РЕШЕНИЕ

2.36 На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса человека M=60 кг, масса доски m=20 кг. С какой скоростью u относительно пола будет двигаться тележка, если человек пойдет вдоль доски со скоростью относительно доски v=1 м/с? Массой колес пренебречь. Трение во втулках не учитывать.
РЕШЕНИЕ

2.37 В предыдущей задаче найти, на какое расстояние d передвинется тележка, если человек перейдет на другой конец доски; переместится человек относительно пола; переместится центр масс системы тележка человек относительно доски и относительно пола. Длина l доски равна 2 м.
РЕШЕНИЕ

2.38 На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15 т. Орудие стреляет вверх под углом 60 к горизонту в направлении пути. С какой скоростью v1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью v2=600 м/с?
РЕШЕНИЕ

2.39 Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая массой m1=3 кг получила скорость u1=400 м/с в прежнем направлении. Найти скорость u2 второй, большей части после разрыва.
РЕШЕНИЕ

2.40 В предыдущей задаче найти, с какой скоростью u2 и под каким углом к горизонту полетит большая часть снаряда, если меньшая полетела вперед под углом 60 к горизонту.
РЕШЕНИЕ

2.41 Два конькобежца массами m1=80 кг и m2=50 кг, держась за концы длинного натянутого шнура, неподвижно стоят на льду один против другого. Один из них начинает укорачивать шнур, выбирая его со скоростью v=1 м/с. С какими скоростями u1 и u2 будут двигаться по льду конькобежцы? Трением пренебречь.
РЕШЕНИЕ

2.42 Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту вращения, при которой кубик соскользнет с диска.
РЕШЕНИЕ

2.43 Акробат на мотоцикле описывает мертвую петлю радиусом r=4 м. С какой наименьшей скоростью должен проезжать акробат верхнюю точку петли, чтобы не сорваться?
РЕШЕНИЕ

2.44 К шнуру подвешена гиря. Гирю отвели в сторону так, что шнур принял горизонтальное положение, и отпустили. Как велика сила натяжения Т шнура в момент, когда гиря проходит положение равновесия? Какой угол с вертикалью составляет шнур в момент, когда сила натяжения шнура равна силе тяжести гири?
РЕШЕНИЕ

2.45 Самолет описывает петлю Нестерова радиусом R=200 м. Во сколько раз сила, с которой летчик давит на сиденье в нижней точке, больше силы тяжести P летчика, если скорость самолета v=100 м/с?
РЕШЕНИЕ

2.46 Грузик, привязанный к шнуру длиной l=50 см, описывает окружность в горизонтальной плоскости. Какой угол образует шнур с вертикалью, если частота вращения n=1 с-1?
РЕШЕНИЕ

2.47 Грузик, привязанный к нити длиной l=1 м, описывает окружность в горизонтальной плоскости. Определить период T обращения, если нить отклонена на угол 60 от вертикали.
РЕШЕНИЕ

2.48 При насадке маховика на ось центр тяжести оказался на расстоянии r=0,1 мм от оси вращения. В каких пределах меняется сила давления оси на подшипники, если частота вращения маховика n=10 с-1? Масса m маховика равна 100 кг.
РЕШЕНИЕ

2.49 Мотоцикл едет по внутренней поверхности вертикального цилиндра радиусом R=11,2 м. Центр тяжести мотоцикла с человеком расположен на расстоянии l=0,8 м от поверхности цилиндра. Коэффициент трения покрышек о поверхность цилиндра равен 0,6. С какой минимальной скоростью должен ехать мотоциклист? Каков будет при этом угол φ наклона его к плоскости горизонта?
РЕШЕНИЕ

2.50 Автомобиль массой m=5 т движется со скоростью v=10 м/с по выпуклому мосту. Определить силу давления автомобиля на мост в его верхней части, если радиус R кривизны моста равен 50 м.
РЕШЕНИЕ

2.51 Сосуд с жидкостью вращается с частотой n=2 вокруг вертикальной оси. Поверхность жидкости имеет вид воронки. Чему равен угол наклона поверхности жидкости в точках, лежащих на расстоянии r=5 см от оси?
РЕШЕНИЕ

2.52 Автомобиль идет по закруглению шоссе, радиус кривизны которого равен 200 м. Коэффициент трения f колес о покрытие дороги равен 0,1 гололед. При какой скорости v автомобиля начнется его занос
РЕШЕНИЕ

2.53 Какую наибольшую скорость может развить велосипедист, проезжая закругление радиусом R=50 м, если коэффициент трения скольжения f между шинами и асфальтом равен 0,3? Каков угол отклонения велосипеда от вертикали, когда велосипедист движется по закруглению?
РЕШЕНИЕ

2.54 Самолет массой m=2,5 т летит со скоростью v=400 км/ч. Он совершает в горизонтальной плоскости вираж-полет самолета по дуге окружности с некоторым углом крена. Радиус R траектории самолета равен 500 м. Найти поперечный угол наклона самолета и подъемную силу F крыльев во время полета.
РЕШЕНИЕ

2.55 Вал вращается с частотой n=2400. К валу перпендикулярно его длине прикреплен стержень очень малой массы, несущий на концах грузы массой m=1 кг каждый, находящиеся на расстоянии r=0,2 м от оси вала. Найти силу F, растягивающую стержень при вращении вала; момент М силы, которая действовала бы на вал, если бы стержень был наклонен под углом 89 к оси вала.
РЕШЕНИЕ

2.56 Тонкое однородное медное кольцо радиусом R=10 см вращается относительно оси, проходящей через центр кольца, с угловой скоростью 10 рад/с. Определить нормальное напряжение, возникающее в кольце в двух случаях когда ось вращения перпендикулярна плоскости кольца и когда лежит в плоскости кольца. Деформацией кольца при вращении пренебречь.
РЕШЕНИЕ

2.57 Под действием постоянной силы вагонетка прошла путь s=5 м и приобрела скорость v=2 м/с. Определить работу А силы, если масса m вагонетки равна 400 кг и коэффициент трения f=0,01.
РЕШЕНИЕ

2.58 Вычислить работу, совершаемую при равноускоренном подъеме груза массой m=100 кг на высоту h=4 м за время t=2 c.
РЕШЕНИЕ

2.59 Найти работу подъема груза по наклонной плоскости длиной l=2 м, если масса m груза равна 100 кг, угол наклона 30, коэффициент трения f=0,1 и груз движется с ускорением a=1 м/с2.
РЕШЕНИЕ

2.60 Вычислить работу A, совершаемую на пути s=12 м равномерно возрастающей силой, если в начале пути сила F1=10 Н, в конце пути F2=46 Н.
РЕШЕНИЕ

2.61 Под действием постоянной силы F=400 Н, направленной вертикально вверх, груз массой m=20 кг был поднят на высоту h=15 м. Какой потенциальной энергией П будет обладать поднятый груз? Какую работу А совершит сила F?
РЕШЕНИЕ

2.62 Тело массой m=1 кг, брошенное с вышки в горизонтальном направлении со скоростью v0=20 м/с, через 3 с упало на землю. Определить кинетическую энергию T, которую имело тело в момент удара о землю. Сопротивлением воздуха пренебречь.
РЕШЕНИЕ

2.63 Камень брошен вверх под углом 60 к плоскости горизонта. Кинетическая энергия T0 камня в начальный момент времени равна 20 Дж. Определить кинетическую T и потенциальную П энергии камня в высшей точке его траектории. Сопротивлением воздуха пренебречь.
РЕШЕНИЕ

2.64 Насос выбрасывает струю воды диаметром d=2 см со скоростью v=20 м/с. Найти мощность N, необходимую для выбрасывания воды.
РЕШЕНИЕ

2.65 Какова мощность воздушного потока сечением S=0,55 м2 при скорости воздуха v=20 м/с и нормальных условиях
РЕШЕНИЕ

2.66 Вертолет массой m=3 т висит в воздухе. Определить мощность, развиваемую мотором вертолета в этом положении, при двух значениях диаметра ротора 18 м; 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора.
РЕШЕНИЕ

2.67 Материальная точка массой m=2 кг двигалась под действием некоторой силы, направленной вдоль оси Ох согласно уравнению x=A+Bt+Ct2+Dt3, где В=-2 м/с, С=1 м/с2, D=-0,2 м/с3. Найти мощность, развиваемую силой в момент времени t1=2 с и t2=5 c.
РЕШЕНИЕ

2.68 С какой наименьшей высоты h должен начать скатываться акробат на велосипеде не работая ногами, чтобы проехать по дорожке, имеющей форму мертвой петли радиусом R=4 м, и не оторваться от дорожки в верхней точке петли? Трением пренебречь.
РЕШЕНИЕ

2.69 Камешек скользит с наивысшей точки купола, имеющего форму полусферы. Какую дугу опишет камешек, прежде чем оторвется от поверхности купола? Трением пренебречь.
РЕШЕНИЕ

2.70 Мотоциклист едет по горизонтальной дороге. Какую наименьшую скорость он должен развить, чтобы, выключив мотор, проехать по треку, имеющему форму мертвой петли радиусом R=4 м? Трением и сопротивлением воздуха пренебречь.
РЕШЕНИЕ

2.71 При выстреле из орудия снаряд массой 10 кг получает кинетическую энергию 1,8 МДж. Определить кинетическую энергию T2 ствола орудия вследствие отдачи, если масса m2 ствола орудия равна 600 кг.
РЕШЕНИЕ

2.72 Ядро атома распадается на два осколка массами m1=1,6*10-25 кг и m2=2,4*10-25 кг. Определить кинетическую энергию второго осколка, если энергия T1 первого осколка равна 18 нДж.
РЕШЕНИЕ

2.73 Конькобежец, стоя на льду, бросил вперед гирю массой m1=5 кг и вследствие отдачи покатился назад со скоростью v2=1 м/с. Масса конькобежца m2=60 кг. Определить работу, совершенную конькобежцем при бросании гири.
РЕШЕНИЕ

2.74 Молекула распадается на два атома. Масса одного из атомов в 3 раза больше, чем другого. Пренебрегая начальной кинетической энергий и импульсом молекулы, определить кинетические энергии T1 и T2 атомов, если их суммарная кинетическая энергия T=0,032 нДж.
РЕШЕНИЕ

2.75 На рельсах стоит платформа, на которой закреплено орудие без противооткатного устройства так, что ствол его расположен в горизонтальном положении. Из орудия производят выстрел вдоль железнодорожного пути. Масса снаряда равна 10 кг, и его скорость u1=1 км/с. На какое расстояние откатится платформа после выстрела, если коэффициент сопротивления f=0,002?
РЕШЕНИЕ

2.76 Пуля массой m=10 г, летевшая со скоростью v=600 м/с, попала в баллистический маятник массой M=5 кг и застряла в нем. На какую высоту, откачнувшись после удара, поднялся маятник?
РЕШЕНИЕ

2.77 В баллистический маятник массой M=5 кг попала пуля массой m=10 г и застряла в нем. Найти скорость пули, если маятник, отклонившись после удара, поднялся на высоту h=10 см.
РЕШЕНИЕ

2.78 Два груза массами m1=10 и m2=15 кг подвешены на нитях длиной 2 м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол 60 и выпущен. Определить высоту, на которую поднимутся оба груза после удара. Удар грузов считать неупругим.
РЕШЕНИЕ

2.79 Два неупругих шара массами m1=2 и m2=3 кг движутся со скоростями соответственно v1=8 и v2=4 м/с. Определить увеличение внутренней энергии шаров при их столкновении в двух случаях меньший шар нагоняет больший; шары движутся навстречу друг другу.
РЕШЕНИЕ

2.80 Шар массой m1, летящий со скоростью v1=5 м/с, ударяет неподвижный шар массой m2. Удар прямой, неупругий. Определить скорость шаров после удара, а также долю w кинетической энергии летящего шара, израсходованной на увеличение внутренней энергии этих шаров. Рассмотреть два случая m1=2 кг, m2=8 кг; m1=8 кг, m2=2 кг.
РЕШЕНИЕ

2.81 Шар массой m1=2 кг налетает на покоящийся шар массой m2=8 кг. Импульс движущегося шара равен 10 кг*м/с. Удар шаров прямой, упругий. Определить непосредственно после удара импульсы p1 первого шара и p2 второго шара; изменение импульса первого шара; кинетические энергии первого шара и второго шара; изменение кинетической энергии первого шара; долю кинетической энергии, переданной первым шаром второму
РЕШЕНИЕ

2.82 Шар массой m1=6 налетает на другой покоящийся шар массой m2=4 кг. Импульс первого шара равен 5 кг*м/с. Удар шаров прямой, неупругий. Определить непосредственно после удара импульсы первого шара и второго шара; изменение импульса первого шара; кинетические энергии первого шара и T2 второго шара; изменение кинетической энергии первого шара; долю кинетической энергии, переданной первым шаром второму и долю кинетической энергии, оставшейся у первого шара; изменение внутренней энергии шаров; долю кинетической энергии первого шара, перешедшей во внутреннюю энергию шаров.
РЕШЕНИЕ

2.83 Молот массой m1=5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД удара молота при данных условиях.
РЕШЕНИЕ

2.84 Боек свайного молота массой m1=500 падает с некоторой высоты на сваю массой m2=100 кг. Найти КПД удара бойка, считая удар неупругим. Изменением потенциальной энергии сваи при углублении ее пренебречь.
РЕШЕНИЕ

2.85 Молотком, масса которого m1=1 кг, забивают в стену гвоздь массой m2=75 г. Определить КПД удара молотка при данных условиях.
РЕШЕНИЕ

2.86 Шар массой m1=200, движущийся со скоростью v1=10 м/с, ударяет неподвижный шар массой m2=800 г. Удар прямой, абсолютно упругий. Каковы будут скорости u1 и u2 шаров после удара?
РЕШЕНИЕ

2.87 Шар массой m=1,8 кг сталкивается с покоящимся шаром большей массы M. В результате прямого упругого удара шар потерял 0,36 своей кинетической энергии T1. Определить массу большего шара.
РЕШЕНИЕ

2.88 Из двух соударяющихся абсолютно упругих шаров больший шар покоится. В результате прямого удара меньший шар потерял 3/4 своей кинетической энергии T1. Определить отношение k=M/m масс шаров.
РЕШЕНИЕ

2.89 Определить максимальную часть кинетической энергии T1, которую может передать частица массой m1=2*10-22, сталкиваясь упруго с частицей массой m2=6*10-22 г, которая до столкновения покоилась.
РЕШЕНИЕ

2.90 Частица массой m1=10-25 обладает импульсом 5*10-20 кг*м/с. Определить, какой максимальный импульс может передать эта частица, сталкиваясь упруго с частицей массой m2=4*10-25 кг, которая до соударения покоилась.
РЕШЕНИЕ

2.91 На покоящийся шар налетает со скоростью v1=2 м/с другой шар одинаковой с ним массы. В результате столкновения этот шар изменил направление движения на угол 30. Определить скорости u1 и u2 шаров после удара; угол между вектором скорости второго шара и первоначальным направлением движения первого шара. Удар считать упругим.
РЕШЕНИЕ

2.92 Частица массой m1=10-24 имеет кинетическую энергию T1=9 нДж. В результате упругого столкновения с покоящейся частицей массой m2=4*10-24 г она сообщает ей кинетическую энергию T2=5 нДж. Определить угол, на который отклонится частица от своего первоначального направления.
РЕШЕНИЕ