РЕШЕБНИКИ
Химия | Физика | Термех | Математика | Геометрия
ЛАБ. РАБ.
Химия
Школьнику / Студенту
Репетиторы | Заказ работ
Главная » Решебник Мещерский » Теоретическая механика

Задачи на тему Определение сил по заданному движению

Предмет Теоретическая механика
Из пособия Решебник Мещерский
Динамика материальной точки » § 26. Определение сил по заданному движению
Задачи из решебника Мещерского онлайн

Динамика:
Динамика материальной точки
§ 26. Определение сил по заданному движению

Задачи с решениями

26.1 В шахте опускается равноускоренно лифт массы 280 кг. В первые 10 с он проходит 35 м. Найти натяжение каната, на котором висит лифт.
РЕШЕНИЕ

26.2 Горизонтальная платформа, на которой лежит груз массы 1,02 кг, опускается вертикально вниз с ускорением 4 м/с2. Найти силу давления, производимого грузом на платформу во время их совместного спуска.
РЕШЕНИЕ

26.3 К телу массы 3 кг, лежащему на столе, привязали нить, другой конец которой прикреплен к точке A. Какое ускорение надо сообщить точке A, поднимая тело вверх по вертикали, чтобы нить оборвалась, если она рвется при натяжении T=42 Н.
РЕШЕНИЕ

26.4 При подъеме клетки лифта график скоростей имеет вид, изображенный на рисунке. Масса клетки 480 кг. Определить натяжения T1, T2, T3 каната, к которому привешена клетка, в течение трех промежутков времени: 1) от t = 0 до t = 2 c; 2) от t = 2 до t = 8 с и 3) от t = 8 с до t = 10 c.
РЕШЕНИЕ

26.5 Камень массы 0,3 кг, привязанный к нити длины 1 м, описывает окружность в вертикальной плоскости. Определить наименьшую угловую скорость ω камня, при которой произойдет разрыв нити, если сопротивление ее разрыву равно 9 Н.
РЕШЕНИЕ

26.6 На криволинейных участках железнодорожного пути возвышают наружный рельс над внутренним для того, чтобы сила давления проходящего поезда на рельсы была направлена перпендикулярно полотну дороги. Определить величину h возвышения наружного рельса над внутренним при следующих данных: радиус закругления 400 м, скорость поезда 10 м/с, расстояние между рельсами 1,6 м.
РЕШЕНИЕ

26.7 В вагоне поезда, идущего сначала по прямолинейному пути, а затем по закругленному со скоростью 20 м/с, производится взвешивание некоторого груза на пружинных весах; весы в первом случае показывают 50 Н, а на закруглении 51 Н. Определить радиус закругления пути.
РЕШЕНИЕ

26.8 Гиря массы 0,2 кг подвешена к концу нити длины 1 м; вследствие толчка гиря получила горизонтальную скорость 5 м/с. Найти натяжение нити непосредственно после толчка.
РЕШЕНИЕ

26.9 Груз М массы 0,102 кг, подвешенный на нити длины 30 см в неподвижной точке O, представляет собой конический маятник, т. е. описывает окружность в горизонтальной плоскости, причем нить составляет с вертикалью угол 60°. Определить скорость v груза и натяжение T нити.
РЕШЕНИЕ

26.10 Автомобиль массы 1000 кг движется по выпуклому мосту со скоростью v=10 м/с. Радиус кривизны в середине моста ρ=50 м. Определить силу давления автомобиля на мост в момент прохождения его через середину моста.
РЕШЕНИЕ

26.11 В поднимающейся кабине подъемной машины производится взвешивание тела на пружинных весах. При равномерном движении кабины показание пружинных весов равно 50 Н, при ускоренном 51 Н. Найти ускорение кабины.
РЕШЕНИЕ

26.12 Масса кузова трамвайного вагона 10000 кг. Масса тележки с колесами 1000 кг. Определить силу наибольшего и наименьшего давления вагона на рельсы горизонтального прямолинейного участка пути, если на ходу кузов совершает на рессорах вертикальные гармонические колебания по закону x=0,02 sin 10t м.
РЕШЕНИЕ

26.13 Поршень двигателя внутреннего сгорания совершает горизонтальные колебания согласно закону x = r(cos ωt + (r cos 2ωt)/(4l)) см, где r длина кривошипа, l длина шатуна, ω постоянная по величине угловая скорость вала. Определить наибольшее значение силы, действующей на поршень, если масса последнего M.
РЕШЕНИЕ

26.14 Решето рудообогатительного грохота совершает вертикальные гармонические колебания с амплитудой a=5 см. Найти наименьшую частоту k колебаний решета, при которой куски руды, лежащие на нем, будут отделяться от него и подбрасываться вверх.
РЕШЕНИЕ

26.15 Тело массы 2,04 кг совершает колебательное движение по горизонтальной прямой согласно закону x=10 sin(πt/2) м. Найти зависимость силы, действующей на тело, от координаты x, а также наибольшую величину этой силы.
РЕШЕНИЕ

26.16 Движение материальной точки массы 0,2 кг выражается уравнениями x=3 cos 2πt см, y=4 sin πt см (t в с). Определить проекции силы, действующей на точку, в зависимости от ее координат.
РЕШЕНИЕ

26.17 Шарик, масса которого равна 100 г, падает под действием силы тяжести и при этом испытывает сопротивление воздуха. Движение шарика выражается уравнением x = 4,9t – 2,45(1 - e-2t), где x в метрах, t в секундах, ось Ох направлена по вертикали вниз. Определить силу сопротивления воздуха R и выразить ее как функцию скорости шарика.
РЕШЕНИЕ

26.18 Масса стола строгального станка 700 кг, масса обрабатываемой детали 300 кг, скорость хода стола v=0,5 м/с, время разгона t=0,5 c. Определить силу, необходимую для разгона (считая движение равноускоренным) и для дальнейшего равномерного движения стола, если коэффициент трения при разгоне f1=0,14, а при равномерном движении f2=0,07.
РЕШЕНИЕ

26.19 Груженая вагонетка массы 700 кг опускается по канатной железной дороге с уклоном α=15°, имея скорость v=1,6 м/с. Определить натяжение каната при равномерном спуске и при торможении вагонетки. Время торможения t=4 c, общий коэффициент сопротивления движению f=0,015. При торможении вагонетка движется равнозамедленно.
РЕШЕНИЕ

26.20 Груз массы 1000 кг перемещается вместе с тележкой вдоль горизонтальной фермы мостового крана со скоростью v=1 м/с. Расстояние центра тяжести груза до точки подвеса l=5 м. При внезапной остановке тележки груз по инерции будет продолжать движение и начнет качаться около точки подвеса. Определить наибольшее натяжение каната при качании груза.
РЕШЕНИЕ

26.21 Определить отклонение α от вертикали и силу давления N вагона на рельс подвесной дороги при движении вагона по закруглению радиуса R=30 м со скоростью v=10 м/с. Масса вагона 1500 кг.
РЕШЕНИЕ

26.22 Масса поезда без локомотива равна 2*105 кг. Двигаясь по горизонтальному пути равноускоренно, поезд через 60 с после начала движения приобрел скорость 15 м/с. Сила трения равна 0,005 веса поезда. Определить натяжение стяжки между поездом и локомотивом в период разгона.
РЕШЕНИЕ

26.23 Спортивный самолет массы 2000 кг летит горизонтально с ускорением 5 м/с2, имея в данный момент скорость 200 м/с. Сопротивление воздуха пропорционально квадрату скорости и при скорости в 1 м/с равно 0,5 Н. Считая силу сопротивления направленной в сторону, обратную скорости, определить силу тяги винта, если она составляет угол в 10° с направлением полета. Определить также величину подъемной силы в данный момент.
РЕШЕНИЕ

26.24 Грузовой автомобиль массы 6000 кг въезжает на паром со скоростью 6 м/с. Заторможенный с момента въезда на паром автомобиль остановился, пройдя 10 м. Считая движение автомобиля равнозамедленным, найти натяжение каждого из двух канатов, которыми паром привязан к берегу. При решении задачи пренебречь массой и ускорением парома.
РЕШЕНИЕ

26.25 Грузы A и B веса PA=20 Н и PB=40 Н соединены между собой пружиной, как показано на рисунке. Груз А совершает свободные колебания по вертикальной прямой с амплитудой 1 см и периодом 0,25 c. Вычислить силу наибольшего и наименьшего давления грузов А и В на опорную поверхность CD.
РЕШЕНИЕ

26.26 Груз массы M=600 кг посредством ворота поднимают по наклонному шурфу, составляющему угол 60° с горизонтом. Коэффициент трения груза о поверхность шурфа равен 0,2. Ворот радиуса 0,2 м вращается по закону φ=0,4t3. Найти натяжение троса, как функцию времени и значение этого натяжения через 2 с после начала подъема.
РЕШЕНИЕ

26.27 Самолет, пикируя отвесно, достиг скорости 300 м/с, после чего летчик стал выводить самолет из пике, описывая дугу окружности радиуса R=600 м в вертикальной плоскости. Масса летчика 80 кг. Какая наибольшая сила прижимает летчика к креслу?
РЕШЕНИЕ

26.28 Груз M веса 10 Н подвешен к тросу длины l=2 м и совершает вместе с тросом колебания согласно уравнению φ = π/6 sin 2πt, где φ угол отклонения троса от вертикали в радианах, t время в секундах. Определить натяжения T1 и T2 троса в верхнем и нижнем положениях груза.
РЕШЕНИЕ

26.29 Велосипедист описывает кривую радиуса 10 м со скоростью 5 м/сек. Найти угол наклона срединной плоскости велосипеда к вертикали, а также тот наименьший коэффициент трения между шинами велосипеда и полотном дороги, при котором будет обеспечена устойчивость велосипеда.
РЕШЕНИЕ

26.30 Велосипедный трек на кривых участках пути имеет виражи, профиль которых в поперечном сечении представляет собой прямую, наклонную к горизонту, так что на кривых участках внешний край трека выше внутреннего. С какой наименьшей и с какой наибольшей скоростью можно ехать по виражу, имеющему радиус R и угол наклона к горизонту α, если коэффициент трения резиновых шин о грунт трека равен f?
РЕШЕНИЕ

26.31 Во избежание несчастных случаев, происходивших от разрыва маховиков, устраивается следующее приспособление. В ободе маховика помещается тело A, удерживаемое внутри его пружиной S; когда скорость маховика достигает предельной величины, тело А концом своим задевает выступ В задвижки CD, которая и закрывает доступ пара в машину. Пусть масса тела А равна 1,5 кг, расстояние e выступа В от маховика равно 2,5 см, предельная угловая скорость маховика 120 об/мин. Определить необходимый коэффициент жесткости пружины c (т. е. величину силы, под действием которой пружина сжимается на 1 см), предполагая, что масса тела А сосредоточена в точке, расстояние которой от оси вращения маховика в изображенном на рисунке положении равно 147,5 см.
РЕШЕНИЕ

26.32 В регуляторе имеются гири A массы 30 кг, которые могут скользить вдоль горизонтальной прямой MN; эти гири соединены пружинами с точками M и N; центры тяжести гирь совпадают с концами пружин. Расстояние конца каждой пружины от оси O, перпендикулярной плоскости рисунка, в ненапряженном состоянии равно 5 см, изменение длины пружины на 1 см вызывается силой в 200 Н. Определить расстояние центров тяжести гирь от оси O, когда регулятор, равномерно вращаясь вокруг оси O, делает 120 об/мин.
РЕШЕНИЕ

26.33 Предохранительный выключатель паровых турбин состоит из пальца A массы m=0,225 кг, помещенного в отверстии, просверленном в передней части вала турбины перпендикулярно оси, и отжимаемого внутрь пружиной; центр тяжести пальца отстоит от оси вращения вала на расстоянии l=8,5 мм при нормальной скорости вращения турбины n=1500 об/мин. При увеличении числа оборотов на 10% палец преодолевает реакцию пружины, отходит от своего нормального положения на расстояние x=4,5 мм, задевает конец рычага B и освобождает собачку C, связанную системой рычагов с пружиной, закрывающей клапан парораспределительного механизма турбины. Определить жесткость пружины, удерживающей тело A, т.е. силу, необходимую для сжатия ее на 1 см, считая реакцию пружины пропорциональной ее сжатию.
РЕШЕНИЕ

26.34 Точка массы m движется по эллипсу x2/a2+y2/b2=1. Ускорение точки параллельно оси y. При t=0 координаты точки были x=0, y=b, начальная скорость v0. Определить силу, действующую на движущуюся точку в каждой точке ее траектории.
РЕШЕНИЕ

26.35 Шарик массы m закреплен на конце вертикального упругого стержня, зажатого нижним концом в неподвижной стойке. При небольших отклонениях стержня от его вертикального равновесного положения можно приближенно считать, что центр шарика движется в горизонтальной плоскости Oxy, проходящей через верхнее равновесное положение центра шарика. Определить закон изменения силы, с которой упругий, изогнутый стержень действует на шарик, если выведенный из своего положения равновесия, принятого за начало координат, шарик движется согласно уравнениям x=a cos kt, y=b sin kt, где a, b, k постоянные величины.
РЕШЕНИЕ