1.1 Напишите уравнение сферы с центром A, проходящей через точку N, если А(-2; 2; 0), N (5; 0; -1); А (-2; 2; 0), N (0; 0; 0); А (0; 0; 0), N (5; 3; 1)
РЕШЕНИЕ1.2 Все стороны ромба, диагонали которого равны 15 см и 20 см, касаются сферы радиуса 10 см. Найдите расстояние от центра сферы до плоскости ромба.
РЕШЕНИЕ1.1 Напишите уравнение сферы радиуса R с центром A, если А (2; -4; 7), R = 3; А (0; 0; 0), R = √2; А (2; 0; 0), R = 4.
РЕШЕНИЕ1.2 Через точку, делящую радиус сферы пополам, проведена секущая плоскость, перпендикулярная к этому радиусу. Радиус сферы равен R. Найдите радиус получившегося сечения; площадь боковой поверхности конуса, вершиной которого является центр сферы, а основанием полученное сечение
РЕШЕНИЕ1.3 Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точка касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.
РЕШЕНИЕ1.1 Вершины прямоугольника лежат на сфере радиуса 10 см. Найдите расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16 см.
РЕШЕНИЕ1.2 Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если его стороны равны 10 см, 10 см и 12 см.
РЕШЕНИЕ2.1 Площадь сферы равна 324 см2. Найдите радиус
РЕШЕНИЕ2.2 Шар и цилиндр имеют равные объемы, а диаметр шара равен диаметру основания цилиндра. Выразите высоту цилиндра через радиус шара.
РЕШЕНИЕ2.1 Площадь сечения сферы, проходящего через ее центр, равна 9 м2. Найдите площадь сферы.
РЕШЕНИЕ2.2 Используя формулу площади сферы, докажите, что площади двух сфер пропорциональны квадратам их радиусов.
РЕШЕНИЕ2.3 Радиусы двух параллельных сечений сферы равны 9 см и 12 см. Расстояние между секущими плоскостями равно 3 см. Найдите площадь сферы.
РЕШЕНИЕ2.1 Найдите площадь сферы, радиус которой равен 6 см; 2 дм; √2 м; 2√3 см.
РЕШЕНИЕ