РЕШЕБНИКИ
Химия | Физика | Термех | Математика | Геометрия
ЛАБ. РАБ.
Химия
Школьнику / Студенту
Репетиторы | Заказ работ
Главная » Задачи с решениями и ответы к упражнениям

Теоретическая механика

Задачи с решениями и ответы к упражнениям
Страница 9 : 1 » « 187
Для подъема копровой бабы веса P=3 кН служит вертикальный ворот, вал которого радиуса r=20 см опирается нижним концом на подпятник A, а верхним концом удерживается в подшипнике B. Вал приводится во вращение мотором. Найти необходимый для равномерного подъема копровой бабы вращающий момент мотора, а также реакции в подпятнике A и подшипнике B. При этом дано: h1=1 м, h=30 см и вес вращающихся частей ворота P1=1 кН.Ворот, служащий для подъема породы из наклонного шурфа, состоит из вала радиуса 0,25 м и длины 1,5 м. Вал приводится во вращение при помощи мотора (на рисунке не показан). Определить реакции опор и вращающий момент Mвр мотора, если вес вала равен 0,8 кН, вес груза 4 кН, коэффициент трения между грузом и поверхностью шурфа равен 0,5, угол наклона шурфа к горизонту равен 30° и место схода троса с вала находится на расстоянии 50 см от подшипника B. Вращение вала считать равномерным.Горизонтальный вал трансмиссии, несущий два шкива C и D ременной передачи, может вращаться в подшипниках A и B. Радиусы шкивов: rC=20 см, rD=25 см; расстояния шкивов от подшипников: a=b=50 см; расстояние между шкивами c=100 см. Натяжения ветвей ремня, надетого на шкив C, горизонтальны и имеют величины T1 и t1, причем T1=2t1=5 кН, натяжения ветвей ремня, надетого на шкив D, образуют с вертикалью угол α=30° и имеют величины T2 и t2, причем T2=2t2. Определить натяжения T2 и t2 в условиях равновесия и реакции подшипников, вызванные натяжениями ремней.Давление шатуна двигателя, сосредоточенное в середине D шейки коленчатого вала, равно P=20 кН и направлено под углом 10° к горизонту, причем плоскость ODO1, проходящая через оси вала OO1 и шейки D, образует с вертикалью угол 30°. От маховика усилие передается на завод канатом, ветви которого параллельны и наклонены к горизонту под углом 30°. Действие силы P уравновешивается натяжениями T и t ветвей каната и реакциями подшипников A и B. Вес маховика 13 кН, диаметр его d=2 м, сумма натяжений ветвей каната T+t=7,5 кН, а указанные на рисунке расстояния равны: точки D от оси OO1 r=125 мм, l=250 мм, m=300 мм, n=450 мм. Определить реакции подшипников A и B и натяжения t и T.Для передачи вращения с одного вала на другой, ему параллельный, установлены два одинаковых вспомогательных шкива, заклиненных на горизонтальной оси KL. Ось может вращаться в подшипнике M, укрепленном на колонке MN. Треугольное основание этой колонки притянуто к полу двумя болтами A и B и свободно опирается точкой C. Болт A проходит через круглое отверстие в основании, болт же B — через продолговатое отверстие, имеющее направление линии AB. Ось колонки проходит через центр треугольника ABC. Определить реакции в точках A, B и C, если расстояние оси KL от пола равно 1 м, расстояния середин шкивов от оси колонки равны 0,5 м и натяжения всех четырех ветвей ремней принимаются одинаковыми и равными 600 Н. Ветви правого ремня горизонтальны, а ветви левого наклонены к горизонту под углом 30°. Вес всей установки равен 3 кН и приложен к точке, лежащей на оси колонки; даны размеры: AB=BC=CA=50 см.Подвеска подшипника ременного шкива D прикреплена к гладкому горизонтальному потолку MN в точках A и C и упирается в него точкой B. Эти точки лежат в вершинах равностороннего треугольника ABC со стороной 30 см. Положение центра ременного шкива D определяется вертикалью EF=40 см, опущенной из центра E треугольника ABC, и горизонталью FD=50 см, параллельной стороне AC. Плоскость шкива перпендикулярна прямой FD. Натяжение P каждой ветви ремня равно 1200 Н и наклонено к вертикали под углом 30°. Определить реакции в опорах A, B и C, пренебрегая весом частей.Картина в раме, имеющей форму прямоугольника ABCD, подвешена на вертикальной стене при помощи шнура EKF, надетого на крюк K так, что край AB горизонтален; точки E, F — середины сторон AD и BC. Картина наклонена к стене под углом α=arctg(3/4) и опирается на два гвоздя L и M, вбитых в стену, причем AL=MB. Размеры картины: AB=60 см, AD=75 см; вес картины 200 Н и приложен в центре прямоугольника ABCD; длина шнура 85 см. Определить натяжение T шнура и давления на гвозди L и M.Бифиляр состоит из однородного стержня AA1, подвешенного на двух нерастяжимых нитях длины l, которые укреплены в точках B и B1. Длина стержня AA1=BB1=2r, а вес P. Стержень повернут вокруг вертикальной оси на угол α. Определить момент M пары, которую нужно приложить к стержню, чтобы удержать его в равновесии, а также натяжение T нитей.Тренога ABDE, имеющая форму правильной пирамиды, укреплена шарнирно на двух консольных балках. Через блок, укрепленный в вершине E треноги, перекинут трос, равномерно поднимающий с помощью лебедки груз веса P. От блока к лебедке трос тянется параллельно консоли. Определить реакции заделки первой консоли, пренебрегая ее весом и весом треноги. Высота треноги равна l/2.Четырехзвенный механизм робота-манипулятора расположен в горизонтальной плоскости Oxy. Длины всех звеньев одинаковы и равны l, масса каждого звена m. Масса объекта манипулирования 2m. Найти моменты сил тяжести относительно координатных осей. Звенья считать однородными стержнями.Определить положение центра тяжести C стержневого контура AFBD, состоящего из дуги ADB четверти окружности радиуса FD=R и из дуги полуокружности AFB, построенной на хорде AB как на диаметре. Линейные плотности стержней одинаковы.Определить положение центра тяжести C площади, ограниченной полуокружностью AOB радиуса R и двумя прямыми равной длины AD и DB, причем OD=3R.Найти центр тяжести C площади кругового сегмента ADB радиуса AO=30 см, если угол AOB=60°.Определить положение центра тяжести однородного диска с круглым отверстием, предполагая радиус диска равным r1, радиус отверстия равным r2 и центр этого отверстия находящимся на расстоянии r1/2 от центра диска.Определить координаты центра тяжести четверти кольца, показанного на рисунке.Найти координаты центра тяжести фигуры, изображенной на рисунке.Найти центр тяжести поперечного сечения плотины, показанного на рисунке, принимая, что удельный вес бетона равен 24 кН/м3, а земляного грунта 16 кН/м3.Найти координаты центра тяжести поперечного сечения неравнобокого уголка, полки которого имеют ширину OA=a, OB=b и толщину AC=BD=d.Найти расстояние центра тяжести таврового сечения ABCD от стороны его AC, если высота тавра BD=h, ширина полки AC=a, толщина полки равна d и толщина стенки равна b.Найти центр тяжести двутаврового профиля, размеры которого указаны на рисунке.Найти координаты центра тяжести однородной пластинки, изображенной на рисунке, зная, что AH=2 см, HG=1,5 см, AB=З см, BC=10 см, EF=4 см, ED=2 см.В однородной квадратной доске ABCD со стороной AB=2 м вырезано квадратное отверстие EFGH, стороны которого соответственно параллельны сторонами ABCD и равны 0,7 м каждая. Определить координаты x и y центра тяжести оставшейся части доски, зная, что OK=O1K=0,5 м, где O и O1 — центры квадратов, OK и O1K соответственно параллельны сторонам квадратов.Провести через вершину D однородного прямоугольника ABCD прямую DE так, чтобы при подвешивании отрезанной по этой прямой трапеции ABED за вершину E сторона AD, равная a, была горизонтальна.Дан квадрат ABDC, сторона которого равна a. Найти внутри него такую точку E, чтобы она была центром тяжести площади, которая получится, если из квадрата вырезать равнобедренный треугольник AEB.Четыре человека несут однородную треугольную пластину. Двое взялись за две вершины, остальные — за стороны, примыкающие к третьей вершине. На каком расстоянии от третьей вершины они должны поместиться, для того чтобы каждый из четырех поддерживал четверть полного веса пластины?Определить координаты центра тяжести системы грузов, расположенных в вершинах прямоугольного параллелепипеда, ребра которого соответственно равны: AB=20 см, AC=10 см, AD=5 см. Веса грузов в вершинах A, B, C, D, E, F, G, H соответственно равны 1 Н, 2 Н, 3 Н, 4 Н, 5 Н, 3 Н, 4 Н, 3 Н.Определить координаты центра тяжести контура прямоугольного параллелепипеда, ребра которого суть однородные бруски длиной: OA=0,8 м, OB=0,4 м, OC=0,6 м. Веса брусков равны соответственно: OA=250 Н, OB, OC и CD по 75 Н, CG — 200 Н; AF — 125 Н, AG и GE по 50 Н, BD, BF, DE и EF по 25 Н.Найти координаты центра тяжести тела, имеющего вид стула, состоящего из стержней одинаковой длины и веса. Длина стержня равна 44 см.Найти координаты центра тяжести плоской фермы, состоящей из семи стержней, длины которых указаны на рисунке, если вес 1 м для всех стержней один и тот же.Найти координаты центра тяжести деревянного молотка, состоящего из прямоугольного параллелепипеда и ручки с квадратным сечением. Дано: a=10 см, b=8 см, c=18 см, d=40 см, l=3 см.Корпус легкого крейсера весит 19000 кН. Центр тяжести корпуса находится по вертикали над килем на высоте y1=6 м. После спуска на воду внутри корпуса установлены главные машины и котлы. Главные машины весят 4500 кН, и ордината центра тяжести их y2=3 м. Вес котлов равен 5000 кН, и ордината центра тяжести их y3=4,6 м. Определить ординату yC общего центра тяжести корпуса, машин и котлов.На корабле водоизмещением в 45000 кН груз весом в 300 кН перемещен из носового отсека в кормовой на расстояние 60 м. Насколько переместился общий центр тяжести корабля и груза?Для однородного тетраэдра ABCDEF, усеченного параллельно основанию, даны: площадь ABC=a, площадь DEF=b, расстояние между ними h. Найти расстояние z центра тяжести данного усеченного тетраэдра от основания ABC.Корпус якорной подводной мины имеет форму цилиндра с выпуклыми сферическими днищами. Радиус цилиндрического пояса r=0,4 м, высота цилиндрического пояса h=2r; высоты сферических сегментов соответственно равны: f1=0,5r и f2=0,2r. Найти центр тяжести поверхности корпуса мины.Найти предельную высоту h цилиндра, при которой тело, состоящее из цилиндра и полушара одинаковой плотности и одинакового радиуса r, теряет устойчивость в положении равновесия, когда оно опирается поверхностью полушара на гладкую горизонтальную плоскость. Центр тяжести всего тела должен совпадать с центром полушара. Расстояние центра тяжести однородного полушара от его основания равно 3r/8.