Найти предельную высоту h конуса, при которой тело, состоящее из конуса и полушара одинаковой плотности и радиуса r, теряет устойчивость в положении равновесия при условии предыдущей задачи.
Тонкий однородный лист изогнут в виде двух треугольников и квадрата, как показано на рисунке: равнобедренный треугольник OAB лежит в плоскости xy, прямоугольный треугольник ODE — в плоскости yz (вершина прямого угла — точка E), квадрат OBKE — в горизонтальной плоскости. Определить координаты центра тяжести изогнутого листа.
По данному уравнению движения точки на произвольно выбранной траектории построить через равные промежутки времени шесть положений точки, определить расстояние s по траектории от начала отсчета до конечного положения точки и пройденный ею путь σ за указанный промежуток времени (s и σ — в сантиметрах, t — в секундах). 1) s = 5 - 4t + t2, 0 ≤ t ≤ 5. 2) s = 1 + 2t - t2, 0 ≤ t ≤ 2,5. 3) s = 4 sin 10t, π/20 ≤ t ≤ Зπ/10.
По данным уравнениям движения точки найти уравнения ее траектории в координатной форме и указать на рисунке направление движения. 1) x = 3t - 5, y = 4 - 2t. 2) x = 2t, y = 8t2. 3) x = 5 sin 10t, y = 3 cos 10t. 4) x = 2 - 3 cos 5t, y = 4 sin 5t - 1. 5) x = ch t = 1/2 (et + e-t), y = sh t = 1/2 (et - e-t).
Построить траекторию точки, радиус-вектор которой изменяется согласно уравнению (r0 и e — постоянные заданные векторы, i и j — координатные орты). 1) r = r0 + t*e. 2) r = r0 + cos t*e. 3) r = ai cos(π/(1+t2)) + bj sin (π/(1+t2)).
По заданным уравнениям движения точки найти уравнение ее траектории, а также указать закон движения точки по траектории, отсчитывая расстояние от начального положения точки. 1) x = 3t2, y = 4t2. 2) x = 3 sin t, y = 3 cos t. 3) x = a cos2 t, y = a sin2 t. 4) x = 5 cos 5t2, y = 5 sin 5t2.
Мостовой кран движется вдоль мастерской согласно уравнению x=t; по крану катится в поперечном направлении тележка согласно уравнению y=1,5t (x и y — в метрах, t — в секундах). Цепь укорачивается со скоростью v=0,5 м/с. Определить траекторию центра тяжести груза; в начальном положении центр тяжести груза находился в горизонтальной плоскости Oxy; ось Oz направлена вертикально вверх.
Движение точки, описывающей фигуру Лиссажу, задается уравнениями x=3 sin t, y=2 cos 2t (t — в секундах). Найти уравнение траектории, вычертить ее и указать направление движения точки в различные моменты времени. Указать также ближайший после начала движения момент времени t1, когда траектория пересечет ось Ox.
При соответствующем выборе осей координат уравнения движения электрона в постоянном магнитном поле определяются равенствами x=a sin kt, y=a cos kt, z=vt, где a, k и v — некоторые постоянные, зависящие от напряженности магнитного поля, массы, заряда и скорости электрона. Определить траекторию электрона и закон движения его по траектории.
Гармонические колебания точки определяются законом x=a sin(kt+ε), где a > 0 — амплитуда колебаний, k > 0 — круговая частота колебаний и ε (-π ≤ ε ≤ π) — начальная фаза. Определить центр колебаний a0, амплитуду, круговую частоту, период T, частоту колебаний f в герцах и начальную фазу по следующим уравнениям движения (x — в сантиметрах, f — в секундах): 1) x = -7 cos 12t. 2) x = 4 sin (πt/20) - 3 cos (πt/20). 3) x = 2 - 4 sin 140t. 4) x = 6 sin2 18t. 5) x = 1 - 4 cos2 (πt/60).
Груз, поднятый на упругом канате, колеблется согласно уравнению x=a sin(kt+Зπ/2), где a — в сантиметрах, k — в рад/с. Определить амплитуду и круговую частоту колебаний груза, если период колебаний равен 0,4 с и в начальный момент x0=-4 см. Построить также кривую расстояний.
Определить траекторию точки, совершающей одновременно два гармонических колебания равной частоты, но разных амплитуд и фаз, если колебания происходят по двум взаимно перпендикулярным осям: x=a sin(kt+α), y=b sin(kt+β).
Найти уравнение траектории движения точки, получающегося при сложении взаимно перпендикулярных колебаний разной частоты: 1) x = a sin 2ωt, y = a sin ωt; 2) x = a cos 2ωt, y = a cos ωt.
Кривошип OA вращается с постоянной угловой скоростью ω=10 рад/с. Длина OA=AB=80 см. Найти уравнения движения и траекторию средней точки M шатуна, а также уравнение движения ползуна B, если в начальный момент ползун находился в крайнем правом положении; оси координат указаны на рисунке.
Определить уравнения движения и траекторию точки обода колеса радиуса R=1 м автомобиля, если автомобиль движется по прямолинейному пути с постоянной скоростью 20 м/с. Принять, что колесо катится без скольжения; за начало координат взять начальное положение точки на пути, принятом за ось Ox.
Даны уравнения движения снаряда x = v0 cos α t, y = v0 sin α t - gt2/2, где v0 — начальная скорость снаряда, α — угол между v0 и горизонтальной осью x, g — ускорение силы тяжести. Определить траекторию движения снаряда, высоту H, дальность L и время T полета снаряда.
Определить параболу безопасности (все точки, лежащие вне этой параболы, не могут быть достигнуты снарядом при данной начальной скорости v0 и любом угле бросания α).
Даны уравнения движения точки: x = 2a cos2(kt/2), y = a sin kt, где a и k — положительные постоянные. Определить траекторию и закон движения точки по траектории, отсчитывая расстояние от начального положения точки.
По заданным уравнениям движения точки в декартовых координатах x = R cos2 (kt/2), y = (R/2) sin (kt), z = R sin (kt/2) найти ее траекторию и уравнения движения в сферических координатах.
Точка участвует одновременно в двух взаимно перпендикулярных затухающих колебаниях, уравнения которых имеют вид x = Ae-ht cos(kt + ε), y = Ae-ht sin(kt + ε), где A > 0, h > 0, k > 0 и ε — некоторые постоянные. Определить уравнения движения в полярных координатах и найти траекторию точки.
Плоский механизм манипулятора переносит груз из одного положения в другое по траектории, определяемой полярными координатами центра схвата rC=rC(t), φC=φC(t). Найти: 1) законы изменения углов ψ1 и ψ2, отрабатываемых соответствующими приводами, обеспечивающие выполнение заданной программы; 2) законы изменения этих углов, если груз перемещается по прямой, параллельной оси y, отстоящей от нее на расстоянии a по закону y=s(t), где s — заданная функция времени t.
Точка совершает гармонические колебания по закону x=a sin kt. Определить амплитуду a и круговую частоту k колебаний, если при x=x1 скорость v=v1, а при x=x2 скорость v=v2.
Длина линейки эллипсографа AB=40 см, длина кривошипа OC=20 см, AC=CB. Кривошип равномерно вращается вокруг оси O с угловой скоростью ω. Найти уравнения траектории и годографа скорости точки M линейки, лежащей на расстоянии AM=10 см от конца A.
Точка описывает фигуру Лиссажу согласно уравнениям x = 2 cos t, y = 4 cos 2t (x, y — в сантиметрах, t — в секундах). Определить величину и направление скорости точки, когда она находится на оси Oy.
Кривошип OA вращается с постоянной угловой скоростью ω. Найти скорость середины M шатуна кривошипноползунного механизма и скорость ползуна B в зависимости от времени, если OA=AB=a (см. рисунок к задаче 10.12).
Движение точки задано уравнениями x = v0t cos α0, y = v0t sin α0 - gt2/2, причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, v0, g и α0 < π/2 — величины постоянные. Найти: 1) траекторию точки, 2) координаты наивысшего ее положения, 3) проекции скорости на координатные оси в тот момент, когда точка находится на оси Ox.
Движение точки задано теми же уравнениями, что и в предыдущей задаче, причем v0=20 м/с, α0=60°, g=9,81 м/с2. Найти, с какой скоростью v1 должна выйти из начала координат в момент t=0 вторая точка для того, чтобы, двигаясь равномерно по оси Ox, она встретилась с первой точкой, и определить расстояние x1 до места встречи.
Определить высоты h1, h2 и h3 над поверхностью воды трех пунктов отвесного берега, если известно, что три пули, выпущенные одновременно в этих пунктах с горизонтальными скоростями 50, 75 и 100 м/с, одновременно упали в воду, причем расстояние точки падения первой пули от берега равно 100 м; принять во внимание только ускорение силы тяжести g=9,81 м/с2. Определить также продолжительность T полета пуль и их скорости v1, v2 и v3 в момент падения в воду.
Из орудия, ось которого образует угол 30° с горизонтом, выпущен снаряд со скоростью 500 м/с. Предполагая, что снаряд имеет только ускорение силы тяжести g=9,81 м/с2, найти годограф скорости снаряда и скорость точки, вычерчивающей годограф.
Определить уравнения движения и траекторию точки колеса электровоза радиуса R=1 м, лежащей на расстоянии a=0,5 м от оси, если колесо катится без скольжения по горизонтальному прямолинейному участку пути; скорость оси колеса v=10 м/с. Ось Ox совпадает с рельсом, ось Oy — с радиусом точки при ее начальном низшем положении. Определить также скорость этой точки в те моменты времени, когда диаметр колеса, на котором она расположена, займет горизонтальное и вертикальное положения.
Скорость электровоза v0=72 км/ч; радиус колеса его R=1 м; колесо катится по прямолинейному рельсу без скольжения. 1) Определить величину и направление скорости v точки M на ободе колеса в тот момент, когда радиус точки M составляет с направлением скорости v0 угол π/2+α. 2) Построить годограф скорости точки M и определить скорость v1 точки, вычерчивающей годограф.