13.1 Определить угловую скорость: 1) секундной стрелки часов, 2) минутной стрелки часов, 3) часовой стрелки часов, 4) вращения Земли вокруг своей оси, считая, что Земля делает один оборот за 24 часа, 5) паровой турбины Лаваля, делающей 15000 об/мин.
РЕШЕНИЕ13.2 Написать уравнение вращения диска паровой турбины при пуске в ход, если известно, что угол поворота пропорционален кубу времени и при t=3 с угловая скорость диска равна ω=27π рад/с.
РЕШЕНИЕ13.3 Маятник центробежного регулятора, вращающийся вокруг вертикальной оси AB, делает 120 об/мин. В начальный момент угол поворота был равен π/6 рад. Найти угол поворота и угловое перемещение маятника за время t=1/2 c.
РЕШЕНИЕ13.4 Тело, начиная вращаться равноускоренно из состояния покоя, делает 3600 оборотов в первые 2 минуты. Определить угловое ускорение.
РЕШЕНИЕ13.5 Вал начинает вращаться равноускоренно из состояния покоя; в первые 5 с он совершает 12,5 оборота. Какова его угловая скорость по истечении этих 5 с?
РЕШЕНИЕ13.6 Маховое колесо начинает вращаться из состояния покоя равноускоренно; через 10 мин после начала движения оно имеет угловую скорость, равную 4π рад/с. Сколько оборотов сделало колесо за эти 10 мин?
РЕШЕНИЕ13.7 Колесо, имеющее неподвижную ось, получило начальную угловую скорость 2π рад/с; сделав 10 оборотов, оно вследствие трения в подшипниках остановилось. Определить угловое ускорение ε колеса, считая его постоянным.
РЕШЕНИЕ13.8 С момента выключения мотора пропеллер самолета, вращавшийся с угловой скоростью, равной 40π рад/с, сделал до остановки 80 оборотов. Сколько времени прошло с момента выключения мотора до остановки, если считать вращение пропеллера равнозамедленным?
РЕШЕНИЕ13.9 Тело совершает колебания около неподвижной оси, причем угол поворота выражается уравнением φ = 20° sin ψ, где угол ψ выражен в угловых градусах зависимостью ψ=(2t)°, причем t обозначает секунды. Определить угловую скорость тела в момент t=0, ближайшие моменты t1 и t2, в которые изменяется направление вращения, и период колебания T.
РЕШЕНИЕ13.10 Часовой балансир совершает крутильные гармонические колебания с периодом T=1/2 c. Наибольший угол отклонения точки обода балансира от положения равновесия α=π/2 рад. Найти угловую скорость и угловое ускорение баланса через 2 с после момента, когда балансир проходит положение равновесия.
РЕШЕНИЕ13.11 Маятник колеблется в вертикальной плоскости около неподвижной горизонтальной оси O. Выйдя в начальный момент из положения равновесия, он достигает наибольшего отклонения α=π/16 рад через 2/3 c. 1) Написать закон колебаний маятника, считая, что он совершает гармонические колебания. 2) В каком положении маятник будет иметь наибольшую угловую скорость и чему она равна?
РЕШЕНИЕ13.12 Определить скорость v и ускорение w точки, находящейся на поверхности Земли в Ленинграде, принимая во внимание только вращение Земли вокруг своей оси; широта Ленинграда 60°, радиус Земли 6370 км.
РЕШЕНИЕ13.13 Маховое колесо радиуса 0,5 м вращается равномерно вокруг своей оси; скорость точек, лежащих на его ободе, равна 2 м/с. Сколько оборотов в минуту делает колесо?
РЕШЕНИЕ13.14 Точка A шкива, лежащая на его ободе, движется со скоростью 50 см/с, а некоторая точка B, взятая на одном радиусе с точкой A, движется со скоростью 10 см/с; расстояние AB=20 см. Определить угловую скорость ω и диаметр шкива.
РЕШЕНИЕ13.15 Маховое колесо радиуса R=2 м вращается равноускоренно из состояния покоя; через t=10 с точки, лежащие на ободе, обладают линейной скоростью v=100 м/с. Найти скорость, нормальное и касательное ускорения точек обода колеса для момента t=15 c.
РЕШЕНИЕ13.16 Найти горизонтальную скорость v, которую нужно сообщить телу, находящемуся на экваторе, для того чтобы оно, двигаясь равномерно вокруг Земли по экватору в особых направляющих, имело ускорение свободного падения. Определить также время T, по истечении которого тело вернется в первоначальное положение. Радиус Земли R=637*106 см, а ускорение силы тяжести на экваторе g=978 см/с2.
РЕШЕНИЕ13.17 Угол наклона полного ускорения точки обода махового колеса к радиусу равен 60°. Касательное ускорение ее в данный момент wτ=10*√3 м/с2. Найти нормальное ускорение точки, отстоящей от оси вращения на расстоянии r=0,5 м. Радиус махового колеса R=1 м.
РЕШЕНИЕ13.18 Вал радиуса R=10 см приводится во вращение гирей P, привешенной к нему на нити. Движение гири выражается уравнением x=100t2, где x расстояние гири от места схода нити с поверхности вала, выраженное в сантиметрах, t время в секундах. Определить угловую скорость ω и угловое ускорение ε вала, а также полное ускорение w точки на поверхности вала в момент t.
РЕШЕНИЕ13.19 Решить предыдущую задачу в общем виде, выразив ускорение точек обода колеса через пройденное гирей расстояние x, радиус колеса R и ускорение гири x =w0=const.
РЕШЕНИЕ13.20 Стрелка гальванометра длины 3 см колеблется вокруг неподвижной оси по закону φ=φ0 sin kt. Определить ускорение конца стрелки в ее среднем и крайних положениях, а также моменты времени, при которых угловая скорость ω и угловое ускорение ε обращаются в нуль, если период колебаний равен 0,4 c, а угловая амплитуда φ0=π/30.
РЕШЕНИЕ