Однородная балка AB веса 200 Н опирается на гладкий горизонтальный пол в точке B под углом 60° и, кроме того, поддерживается двумя опорами C и D. Определить реакции опор в точках B, C и D, если длина AB=3 м, CB=0,5 м, BD=1 м.
Однородная плита AB веса P=100 Н свободно опирается в точке A и удерживается под углом 45° к горизонту двумя стержнями BC и BD. BCD равносторонний треугольник. Точки C и D лежат на вертикальной прямой CD. Пренебрегая весом стержней и считая крепления в точках B, C и D шарнирными, определить реакцию опоры A и усилия в стержнях.
Однородный стержень AB веса 100 Н опирается одним концом на гладкий горизонтальный пол, другим — на гладкую плоскость, наклоненную под углом 30° к горизонту. Y конца B стержень поддерживается веревкой, перекинутой через блок C и несущей груз P; часть веревки BC параллельна наклонной плоскости. Пренебрегая трением на блоке, определить груз P и силы давления NA и NB на пол и на наклонную плоскость.
При сборке моста пришлось поднимать часть мостовой фермы ABC тремя канатами, расположенными, как указано на рисунке. Вес этой части фермы 42 кН, центр тяжести находится в точке D. Расстояния соответственно равны: AD=4 м, DB=2 м, BF=1 м. Найти натяжения канатов, если прямая AC горизонтальна.
Стропила односкатной крыши состоят из бруса AB, у верхнего конца B свободно лежащего на гладкой опоре, а нижним концом A упирающегося в стену. Наклон крыши tg α=0,5; на брус AB приходится вертикальная нагрузка 9 кН, приложенная в середине бруса. Определить реакции опор в точках A и B.
К гладкой стене прислонена однородная лестница AB под углом 45° к горизонту; вес лестницы 200 Н; в точке D на расстоянии, равном 1/3 длины лестницы, от нижнего конца находится человек веса 600 Н. Найти силы давления лестницы на опору A и на стену.
На подъемной однородной лестнице длины 6 м и веса 2,4 кН, которая может вращаться вокруг горизонтальной оси A и наклонена под углом 60° к горизонту, в точке D стоит человек веса 0,8 кН на расстоянии 2 м от конца B. Y конца B лестница поддерживается веревкой BC, наклоненной под углом 75° к горизонту. Определить натяжение T веревки и реакцию A оси.
Однородная балка AB веса P=100 Н прикреплена к стене шарниром A и удерживается под углом 45 к вертикали при помощи троса, перекинутого через блок и несущего груз G. Ветвь BC троса образует с вертикалью угол 30. В точке D к балке подвешен груз Q веса 200 Н. Определить вес груза G и реакцию шарнира A, пренебрегая трением на блоке, если BD=1/4 AB.
Шлюпка висит на двух шлюпбалках, причем вес ее, равный 9,6 кН, распределяется между ними поровну. Шлюпбалка ABC нижним полу-шаровым концом опирается на подпятник A и на высоте 1,8 м над ним свободно проходит через подшипник B; вылет шлюпбалки равен 2,4 м. Пренебрегая весом шлюпбалки, определить силы давления ее на опоры A и B.
Литейный кран ABC имеет вертикальную ось вращения MN; расстояния: MN=5 м; AC=5 м; вес крана 20 кН, центр тяжести его D находится от оси вращения на расстоянии 2 м; вес груза, подвешенного в точке C, равен 30 кН. Найти реакции подшипника M и подпятника N.
Кран в шахте, поднимающий груз P=40 кН, имеет подпятник A и в точке B опирается на гладкую цилиндрическую поверхность, ось которой Ay вертикальна. Длина хвоста AB равна 2 м. Вылет крана DE=5 м. Вес крана равен 20 кН и приложен в точке C, расстояние которой от вертикали Ay равно 2 м. Определить реакции опор A и B.
Кран для подъема тяжестей состоит из балки AB, нижний конец которой соединен со стеной шарниром A, а верхний удерживается горизонтальным тросом BC. Определить натяжение T троса BC и давление на опору A, если известно, что вес груза P=2 кН, вес балки AB равен 1 кН и приложен в середине балки, а угол α=45°.
Кран имеет шарниры в точках A, B и D, причем AB=AD=BD=8 м. Центр тяжести фермы крана находится на расстоянии 5 м от вертикали, проходящей через точку A. Вылет крана, считая от точки A, при этом равен 15 м. Поднимаемый груз весит 200 кН; вес фермы P=120 кН. Определить опорные реакции и натяжение стержня BD для указанного положения крана
Симметричная стропильная ферма ABC у одного конца шарнирно укреплена в неподвижной точке A, а у другого конца B опирается катками на гладкую горизонтальную плоскость. Вес фермы 100 кН. Сторона AC находится под равномерно распределенным, перпендикулярным ей давлением ветра; равнодействующая сил давления ветра равна 8 кН. Длина AB=6 м, угол CAB=30°. Определить опорные реакции.
Арочная ферма имеет неподвижный опорный шарнир в точке A, в точке B — подвижную гладкую опору, плоскость которой наклонена к горизонту под углом 30°. Пролет AB=20 м. Центр тяжести фермы, вес которой вместе со снеговой нагрузкой равен 100 кН, находится в точке C, расположенной над серединой пролета AB. Равнодействующая сил давления ветра F равна 20 кН и направлена параллельно AB, линия ее действия отстоит от AB на 4 м. Определить опорные реакции.
Ферма ABCD в точке D опирается на катки, а в точках A и B поддерживается наклонными стержнями AE и BF, шарнирно укрепленными в точках E и F. Раскосы фермы и прямая EF наклонены к горизонту под углом 45°; длина панели BC=3 м; стержни AE и BF одинаковой длины; расстояние EF=3√2 м; AH=2,25√2 м. Вес фермы и нагрузки равен 75 кН и направлен по прямой CG. Найти реакцию катков RD.
Давление воды на маленькую площадку плотины возрастает пропорционально расстоянию ее от свободной поверхности воды и равно весу столба воды, высота которого равна этому расстоянию, а площадь основания равна взятой площадке. Определить толщину плотины в ее основании в двух случаях когда поперечное сечение плотины прямоугольное; треугольное. Плотина должна быть рассчитана на опрокидывание вокруг ребра B давлением воды, причем коэффициент устойчивости должен быть равен 2. Высота h плотины такая же, как глубина воды, и равна 5 м. Удельный вес воды γ=10 кН/м3, удельный вес материала плотины γ1=22 кН/м3
Определить реакции опор A и B балки, находящейся под действием двух сосредоточенных сил и равномерно распределенной нагрузки. Интенсивность распределенной нагрузки, величины сил и размеры указаны на рисунке.
Определить реакции заделки консольной балки, изображенной на рисунке и находящейся под действием равномерно распределенной нагрузки, сосредоточенной силы и пары сил.
Определить реакции заделки консольной балки, изображенной на рисунке и находящейся под действием равномерно распределенной нагрузки, одной сосредоточенной силы и двух пар сил.
Определить реакции заделки консольной балки, изображенной на рисунке и находящейся под действием пары сил и распределенной нагрузки, изменяющейся по закону треугольника.
Определить реакцию заделки консольной балки, изображенной на рисунке и находящейся под действием сосредоточенной силы, пары сил и распределенной нагрузки, изменяющейся по закону треугольника и трапеции.
Горизонтальная разрезная балка ACB у конца A заделана в стену, у конца B опирается на подвижную опору; в точке C — шарнир. Балка загружена краном, несущим груз P веса 10 кН; вылет KL=4 м, вес крана Q=50 кН, центр тяжести крана лежит на вертикали CD. Размеры указаны на рисунке. Определить, пренебрегая весом балки, опорные реакции в точках A и B для такого положения крана, когда он находится в одной вертикальной плоскости с балкой AB.
Мост состоит из двух частей, связанных между собой шарниром A и прикрепленных к береговым устоям шарнирами B и C. Вес каждой части моста 40 кН; их центры тяжести D и E; на мосту находится груз P=20 кН; размеры указаны на рисунке. Определить силу давления в шарнире A и реакции в точках B и C.
На гладкой горизонтальной плоскости стоит передвижная лестница, состоящая из двух частей AC и BC, длины 3 м, веса 120 Н каждая, соединенных шарниром C и веревкой EF; расстояние BF=AE=1 м; центр тяжести каждой из частей AC и BC находится в ее середине. В точке D на расстоянии CD=0,6 м стоит человек, весящий 720 Н. Определить реакции пола и шарнира, а также натяжение T веревки EF, если угол BAC=ABC=45°.
Мост состоит из двух одинаковых частей M и N, соединенных между собой и с неподвижными опорами посредством шести стержней, наклоненных к горизонту под углом 45° и снабженных на концах шарнирами. Размеры указаны на рисунке. В точке G помещен груз веса P. Определить те усилия в стержнях, которые вызваны действием этого груза.
Мост состоит из двух одинаковых горизонтальных балок, соединенных шарниром A и прикрепленных шарнирно к основанию жесткими стержнями 1, 2, 3, 4, причем крайние стержни вертикальны, а средние наклонены к горизонту под углом α=60°. Соответствующие размеры равны: BC=6 м; AB=8 м. Определить усилия в стержнях и реакцию шарнира A, если мост несет вертикальную нагрузку P=15 кН на расстоянии a=4 м от точки B.
Вдоль мастерской, здание которой поддерживается трехшарнирной аркой, ходит по рельсам мостовой кран. Вес поперечной балки, передвигающейся по рельсам, 12 кН; вес крана 8 кН (кран не нагружен); линия действия веса крана отстоит от левого рельса на расстоянии 0,25 длины балки. Вес каждой половины арки равен 60 кН и приложен на расстоянии 2 м от вертикали, проходящей через соответствующую опору A или B; опорные рельсы мостового крана расположены на расстоянии 1,8 м от этих вертикалей. Высота здания 12 м, ширина пролета 16 м. Равнодействующая сил давления ветра равна 12 кН и направлена параллельно AB, линия ее действия отстоит от AB на 5 м. Определить реакции шарниров A и B и силу давления в шарнире C.
Груз P=25 Н подвешен к концу горизонтального бруса AB. Вес бруса Q=10 Н и приложен в точке E. Брус прикреплен к стенке посредством шарнира A и подперт стержнем CD, с которым скреплен тоже посредством шарнира. Весом стержня CD пренебрегаем. Размеры указаны на рисунке. Определить реакции шарниров A и C.
Два однородных бруса одинаковой длины соединены шарнирно в точке C, а в точках A и B также шарнирно прикреплены к опорам. Вес каждого бруса равен P. В точке C подвешен груз Q. Расстояние AB=d. Расстояние точки С до горизонтальной прямой AB равно b. Определить реакции шарниров A и B.
Два стержня AC и BD одинаковой длины шарнирно соединены в точке D и так же прикреплены к вертикальной стене в точках A и B. Стержень AC расположен горизонтально, стержень BD образует угол 60° с вертикальной стеной. Стержень AC в точке E нагружен вертикальной силой P1=40 Н и в точке C силой Q=100 Н, наклоненной к горизонту под углом 45°. Стержень BD в точке F нагружен вертикальной силой P2=40 Н. Дано: AE=EC, BF=FD. Определить реакции шарниров A и B.