1 Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. LM пересекает AB в точке Q. Докажите, что PC=QC.
РЕШЕНИЕ2 Три равные окружности радиуса R пересекаются в точке M. Пусть A, B и C три другие точки их попарного пересечения. Докажите, что радиус окружности, описанной около треугольника ABC, равен R; M точка пересечения высот треугольника ABC.
РЕШЕНИЕ3 Четыре окружности радиуса R пересекаются по три в точках M и N, и по две в точках A, B, C и D. Докажите что ABCD параллелограмм.
РЕШЕНИЕ4 Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.
РЕШЕНИЕ5 Найдите геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся, как m:n.
РЕШЕНИЕ1.1 На основании AC равнобедренного треугольника ABC взята точка D, а на отрезке BD - точка K так, что AD:DC = AKD:DKC = 2:1. Докажите, что AKD =ABC
РЕШЕНИЕ1.2 Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K так, что AKB=90, CKB=180 - ACB. В каком отношении прямая BK делит сторону AC, если высота, опущенная на AC, делит эту сторону в отношении λ, считая от вершины A
РЕШЕНИЕ1.3 Четырехугольник ABCD вписан в окружность, DC=m, DA=n. На стороне BA взяты точки A1 и K, а на стороне BC C1 и M. Известно, что BA1=a, BC1=c, BK=BM и что отрезки A1M и C1K пересекаются на диагонали BD. Найдите BK и BM.
РЕШЕНИЕ2.1 Пусть M и N середины сторон CD и DE правильного шестиугольника ABCDEF, P точка пересечения отрезков AM и BN. Докажите, что S(ABP)=S(MDNP)
РЕШЕНИЕ2.2 В окружность радиуса 2√7 вписана трапеция ABCD, причем ее основание AD является диаметром, а угол BAD равен 60. Хорда CE пересекает диаметр AD в точке P такой, что AP:PD = 1:3. Найдите площадь треугольника BPE.
РЕШЕНИЕ2.3 В данную окружность впишите прямоугольный треугольник, катеты которого проходят через две данные точки внутри окружности.
РЕШЕНИЕ2.4 На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что AP=BP + CP.
РЕШЕНИЕ2.5 AA1 и BB1 высоты остроугольного треугольника ABC. Докажите, что треугольник AA1C подобен треугольнику BB1C; треугольник ABC подобенA1B1C
РЕШЕНИЕ2.6 Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что угол BAH =OAC
РЕШЕНИЕ2.7 С помощью одной линейки опустите перпендикуляр из данной точки на данный диаметр данной окружности, точка не лежит ни на окружности, ни на диаметре
РЕШЕНИЕНа гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных луночек равна площади треугольника.
РЕШЕНИЕВ дугу AB окружности вписана ломаная AMB из двух отрезков AM>MB. Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам, т. е. AH=HM + MB.
РЕШЕНИЕС помощью циркуля и линейки постройте точку, из которой данные отрезки видны под данными углами.
РЕШЕНИЕВпишите в данный остроугольный треугольник ABC треугольник наименьшего периметра.
РЕШЕНИЕВнутри остроугольного треугольника найдите точку, сумма расстояний от которой до вершин минимальна.
РЕШЕНИЕДокажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причем точка M расположена между точками O и H, и MH=2*MO
РЕШЕНИЕВ треугольник вписана окружность. Точки касания соединены с противоположными вершинами треугольника. Докажите, что полученные отрезки пересекаются в одной точке.
РЕШЕНИЕДокажите, что прямые, проведенные через середины сторон вписанного четырехугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.
РЕШЕНИЕДан треугольник ABC. Некоторая прямая пересекает его стороны AB, BC и продолжение стороны AC в точках C1, A1, B1 соответственно. Докажите, что BA1/A1C * CB1/B1A * AC1/C1B = 1
РЕШЕНИЕДокажите, что середины сторон любого четырехугольника являются вершинами параллелограмма.
РЕШЕНИЕ